In this paper, we investigate Source-free Open-partial Domain Adaptation (SF-OPDA), which addresses the situation where there exist both domain and category shifts between source and target domains. Under the SF-OPDA setting, which aims to address data privacy concerns, the model cannot access source data anymore during target adaptation. We propose a novel training scheme to learn a (n+1)-way classifier to predict the n source classes and the unknown class, where samples of only known source categories are available for training. Furthermore, for target adaptation, we simply adopt a weighted entropy minimization to adapt the source pretrained model to the unlabeled target domain without source data. In experiments, we show our simple method surpasses current OPDA approaches which demand source data during adaptation. When augmented with a closed-set domain adaptation approach during target adaptation, our source-free method further outperforms the current state-of-the-art OPDA method by 2.5%, 7.2% and 13% on Office-31, Office-Home and VisDA respectively.
翻译:在本文中,我们调查了无源开放部分域适应(SF-OPDA),它涉及源与目标域之间存在域和类别变化的情况。在SF-OPDA设置中,该模型旨在解决数据隐私问题,因此在目标适应期间无法再获取源数据。我们提出了一个新的培训计划,以学习一个(n+1)-way分类器来预测n源类别和未知类别,其中只有已知源类别样本可供培训使用。此外,为了目标适应,我们只是采用加权最小化的英特质,将源预培训模型调整为无源数据的非标目标域。在实验中,我们展示的简单方法超过了目前的OPDA方法,在适应期间要求源数据。在目标适应期间,如果在采用封闭域适应方法时,我们的无源方法进一步超越了Office-31、Office-Home和VisDA目前最先进的OPDA方法,分别为2.5%、7.2%和13%。