We introduce CS1QA, a dataset for code-based question answering in the programming education domain. CS1QA consists of 9,237 question-answer pairs gathered from chat logs in an introductory programming class using Python, and 17,698 unannotated chat data with code. Each question is accompanied with the student's code, and the portion of the code relevant to answering the question. We carefully design the annotation process to construct CS1QA, and analyze the collected dataset in detail. The tasks for CS1QA are to predict the question type, the relevant code snippet given the question and the code and retrieving an answer from the annotated corpus. Results for the experiments on several baseline models are reported and thoroughly analyzed. The tasks for CS1QA challenge models to understand both the code and natural language. This unique dataset can be used as a benchmark for source code comprehension and question answering in the educational setting.
翻译:我们引入了 CS1QA, 这是用于在编程教育领域解答代码问题的数据集 。 CS1QA 包括9,237个问答对, 由使用 Python 的入门编程班的聊天记录收集, 以及17,698个无附加说明的聊天数据与代码组成。 每个问题都附有学生代码, 以及代码中与解答问题相关的部分 。 我们仔细设计批注程序, 以构建 CS1QA, 并详细分析所收集的数据集 。 CS1QA 的任务是预测问题类型、 问题所涉相关代码片断以及代码, 并从附加说明的文中获取答案 。 多个基线模型的实验结果被报告和彻底分析 。 CS1QA 挑战模型的任务是理解代码和自然语言 。 这个独特的数据集可以用作源代码理解和在教育环境中回答问题的基准 。