The aim of this paper is to establish causal relationship between ride-sharing platform's policies and outcomes of interest under complex temporal and/or spatial dependent experiments. We propose a temporal/spatio-temporal varying coefficient decision process (VCDP) model to capture the dynamic treatment effects in temporal/spatio-temporal dependent experiments. We characterize the average treatment effect by decomposing it as the sum of direct effect (DE) and indirect effect (IE) and develop estimation and inference procedures for both DE and IE. We also establish the statistical properties (e.g., weak convergence and asymptotic power) of our models. We conduct extensive simulations and real data analyses to verify the usefulness of the proposed method.
翻译:本文的目的是确定在复杂的时间和/或空间依赖性实验下,搭便车平台的政策和相关结果之间的因果关系;我们提议采用一个时间/空间-时差系数决定过程模型,以捕捉时间/空间-时差依赖性实验中的动态处理效应;我们通过将平均处理效应分解为直接效应和间接效应的总和(IE)来将其定性为平均处理效应,并为DE和IE制定估计和推断程序。 我们还确定了我们模型的统计属性(例如,趋同弱和无药力),我们进行了广泛的模拟和实际数据分析,以核实拟议方法的效用。