Governments and public health authorities use seroprevalence studies to guide their responses to the COVID-19 pandemic. These seroprevalence surveys estimate the proportion of persons within a given population who have detectable antibodies to SARS-CoV-2. However, serologic assays are prone to misclassification error due to false positives and negatives, and non-probability sampling methods may induce selection bias. In this paper, we consider nonparametric and parametric prevalence estimators that address both challenges by leveraging validation data and assuming equal probabilities of sample inclusion within covariate-defined strata. Both estimators are shown to be consistent and asymptotically normal, and consistent variance estimators are derived. Simulation studies are presented comparing the finite sample performance of the estimators over a range of assay characteristics and sampling scenarios. The methods are used to estimate SARS-CoV-2 seroprevalence in asymptomatic individuals in Belgium and North Carolina.
翻译:政府和公共卫生当局使用血清阳性研究来指导其对COVID-19大流行的反应,这些血清阳性调查估计了特定人群中具有可检测抗体的人与SARS-COV-2的比例。然而,血清分析由于假阳性和负值而容易发生分类错误,非概率抽样方法可能导致选择偏差。在本文件中,我们认为非参数和参数性流行率估测器通过利用验证数据来应对挑战,并假设在共同变量定义的层内采样的概率相等。两种估计器都显示是一致的,无症状正常,并得出一致的差异估计器。模拟研究比较了估计器对一系列分析特征和抽样假设的有限抽样性能。这些方法用于估计比利时和北卡罗莱纳州无症状的个人的SAS-COV-2血清流行率。