Alternating Direction Method of Multipliers (ADMM) has been used successfully in many conventional machine learning applications and is considered to be a useful alternative to Stochastic Gradient Descent (SGD) as a deep learning optimizer. However, as an emerging domain, several challenges remain, including 1) The lack of global convergence guarantees, 2) Slow convergence towards solutions, and 3) Cubic time complexity with regard to feature dimensions. In this paper, we propose a novel optimization framework for deep learning via ADMM (dlADMM) to address these challenges simultaneously. The parameters in each layer are updated backward and then forward so that the parameter information in each layer is exchanged efficiently. The time complexity is reduced from cubic to quadratic in (latent) feature dimensions via a dedicated algorithm design for subproblems that enhances them utilizing iterative quadratic approximations and backtracking. Finally, we provide the first proof of global convergence for an ADMM-based method (dlADMM) in a deep neural network problem under mild conditions. Experiments on benchmark datasets demonstrated that our proposed dlADMM algorithm outperforms most of the comparison methods.


翻译:在许多常规机器学习应用中成功地使用了多种不同方向方法(ADMM)来同时应对这些挑战。每个层的参数都向后更新,然后往前更新,以便有效地交换每一层的参数信息。时间复杂性通过利用迭代四面形近似法和反向跟踪法,从立方到(近代)地貌特征的等次问题专用算法设计,从(近代)地貌的立方到(近代)地貌的四面形,从而增强这些次级问题。最后,我们提供了在温和条件下在深层神经网络问题中基于ADMMM(DLADMM)的方法的全球趋同的第一个证据。关于基准数据集的实验表明,我们提议的DLADMM算法在大部分比较方法上都超越了范围。

0
下载
关闭预览

相关内容

【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员