Precise confidence estimation in deep learning is vital for high-stakes fields like medical imaging, where overconfident misclassifications can have serious consequences. This work evaluates the effectiveness of Temperature Scaling (TS), a post-hoc calibration technique, in improving the reliability of convolutional neural networks (CNNs) for brain tumor classification. We develop a custom CNN and train it on a merged brain MRI dataset. To simulate real-world uncertainty, five types of image noise are introduced: Gaussian, Poisson, Salt & Pepper, Speckle, and Uniform. Model performance is evaluated using precision, recall, F1-score, accuracy, negative log-likelihood (NLL), and expected calibration error (ECE), both before and after calibration. Results demonstrate that TS significantly reduces ECE and NLL under all noise conditions without degrading classification accuracy. This underscores TS as an effective and computationally efficient approach to enhance decision confidence of medical AI systems, hence making model outputs more reliable in noisy or uncertain settings.
翻译:暂无翻译