Federated learning (FL) can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction by enabling multiple institutions to collaborate without needing to aggregate local data. However, the domain shift caused by different MR imaging protocols can substantially degrade the performance of FL models. Recent FL techniques tend to solve this by enhancing the generalization of the global model, but they ignore the domain-specific features, which may contain important information about the device properties and be useful for local reconstruction. In this paper, we propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI). The core idea is to divide the MR reconstruction model into two parts: a globally shared encoder to obtain a generalized representation at the global level, and a client-specific decoder to preserve the domain-specific properties of each client, which is important for collaborative reconstruction when the clients have unique distribution. Such scheme is then executed in the frequency space and the image space respectively, allowing exploration of generalized representation and client-specific properties simultaneously in different spaces. Moreover, to further boost the convergence of the globally shared encoder when a domain shift is present, a weighted contrastive regularization is introduced to directly correct any deviation between the client and server during optimization. Extensive experiments demonstrate that our FedMRI's reconstructed results are the closest to the ground-truth for multi-institutional data, and that it outperforms state-of-the-art FL methods.
翻译:联邦学习(FL)可以用来提高数据隐私和磁共振图像重建的效率,方法是使多个机构无需汇总当地数据就可以协作,从而在磁共振图像重建中提高数据隐私和效率。然而,不同的MR成像协议引起的域变换可以大大降低FL模型的性能。最近的FL技术倾向于通过提高全球模型的通用性能来解决这个问题,但它们忽视了特定域的特点,这些特点可能包含关于设备属性的重要信息,并且对地方重建有用。在本文件中,我们建议为MR图像重建(FedMRI)采用一个保存FL算法。核心思想是将MR重建模型分为两个部分:一个全球共享的编码器,以在全球范围实现普遍代表性,以及一个客户特定的解码器,以维护每个客户的域特性。当客户有独特的分布时,这种系统将分别在频域空间和图像空间执行,允许在不同空间同时探索通用的表示和客户特性。此外,当域变换时,全球共享的编码模式将进一步增强全球共享的组合模式的趋同。一个全球共享的编码,在客户进行最接近的升级的升级的服务器中,以直接调整,使FRFRF-RF-F-R的服务器在最接近的校正时,在最接近的校正时,使客户在最接近式的机变换换后,使任何最接近式的服务器在最接近式的校正。