Controlling the False Discovery Rate (FDR) in a variable selection procedure is critical for reproducible discoveries, which receives an extensive study in sparse linear models. However, in many scenarios, the sparsity constraint is not directly imposed on the parameters, but on a linear transformation of the parameters to be estimated. Examples can be found in total variations, wavelet transforms, fused LASSO, and trend filtering, etc. In this paper, we propose a data adaptive FDR control in this transformational sparsity setting, the Split Knockoff method. The proposed scheme exploits both variable and data splitting. By variable splitting, the linear transformation constraint is relaxed to its Euclidean proximity in a lifted parameter space, yielding an orthogonal design for improved power and orthogonal Split Knockoff copies. Moreover, by randomly splitting the data into two independent subsets, new knockoff statistics are generated with signs as independent Bernoulli random variables, enabling inverse supermartingale constructions for provable FDR control. Simulation experiments show that the proposed methodology achieves desired FDR and power. An application to Alzheimer's Disease study is provided that atrophy brain regions and their abnormal connections can be discovered based on a structural Magnetic Resonance Imaging dataset (ADNI).
翻译:在可变选择程序中控制虚假发现率(FDR)对于重新生成发现至关重要,这种发现在稀少的线性模型中得到了广泛的研究。然而,在许多情形中,聚度限制不是直接强加于参数,而是对要估计参数的线性转换。举例可见于总变异、波子变换、熔化LASSO和趋势过滤等。在本文中,我们提议在这种变异聚性设置中采用数据适应性FDR控制,即 Split Knoff 方法。拟议方案利用变量和数据分裂两种方法。通过变量分割,线性转换限制会放松到在提升的参数空间接近Euclidean,从而产生一种或线性设计,用于改进功率和或线性分流式敲。此外,通过随机将数据分解成两个独立的子集,产生新的传动统计数据,其标志是独立的Bernoulli随机变量,使超相对调结构构造进行控制。模拟实验显示,拟议的方法通过可变分化的分解,使线性变式变式变式转换限制可以实现理想的FDRDR和电动的大脑连接连接。一个基于AMSDRADRADM的系统的区域。