Real-time kinodynamic trajectory planning in dynamic environments is critical yet challenging for autonomous driving. In this letter, we propose an efficient trajectory planning system for autonomous driving in complex dynamic scenarios through iterative and incremental path-speed optimization. Exploiting the decoupled structure of the planning problem, a path planner based on Gaussian process first generates a continuous arc-length parameterized path in the Fren\'{e}t frame, considering static obstacle avoidance and curvature constraints. We theoretically prove that it is a good generalization of the well-known jerk optimal solution. An efficient s-t graph search method is introduced to find a speed profile along the generated path to deal with dynamic environments. Finally, the path and speed are optimized incrementally and iteratively to ensure kinodynamic feasibility. Various simulated scenarios with both static obstacles and dynamic agents verify the effectiveness and robustness of our proposed method. Experimental results show that our method can run at 20 Hz. The source code is released as an open-source package.
翻译:动态环境中的实时动态动态轨迹规划对于自主驾驶来说至关重要,但具有挑战性。 在本信中,我们提议了一个高效的轨迹规划系统,用于通过迭代和递增路径速度优化,在复杂动态情景中自主驾驶。探索规划问题脱钩的结构,一个基于高山过程的路径规划员首先在Fren\'{e}t框架中生成一个连续的弧长参数路径,同时考虑到静态障碍避免和曲线限制。我们理论上证明这是对众所周知的低能最佳解决方案的很好的概括。引入了一个高效的 St图搜索方法,以在生成的路径上找到一个速度剖面图,处理动态环境。最后,路径和速度以递增和迭代方式优化,以确保动态动力学可行性。各种具有静态障碍和动态剂的模拟情景验证了我们拟议方法的有效性和稳健性。实验结果显示,我们的方法可以运行在20赫兹。源代码作为开放源软件包发布。