In this work, we study literature in Explainable AI and Safe AI to understand poisoning of neural models of code. In order to do so, we first establish a novel taxonomy for Trojan AI for code, and present a new aspect-based classification of triggers in neural models of code. Next, we highlight recent works that help us deepen our conception of how these models understand software code. Then we pick some of the recent, state-of-art poisoning strategies that can be used to manipulate such models. The insights we draw can potentially help to foster future research in the area of Trojan AI for code.
翻译:暂无翻译