Log-Structured Merge trees (LSM trees) are increasingly used as the storage engines behind several data systems, frequently deployed in the cloud. Similar to other database architectures, LSM trees take into account information about the expected workload (e.g., reads vs. writes, point vs. range queries) to optimize their performance via tuning. Operating in shared infrastructure like the cloud, however, comes with a degree of workload uncertainty due to multi-tenancy and the fast-evolving nature of modern applications. Systems with static tuning discount the variability of such hybrid workloads and hence provide an inconsistent and overall suboptimal performance. To address this problem, we introduce Endure - a new paradigm for tuning LSM trees in the presence of workload uncertainty. Specifically, we focus on the impact of the choice of compaction policies, size-ratio, and memory allocation on the overall performance. Endure considers a robust formulation of the throughput maximization problem, and recommends a tuning that maximizes the worst-case throughput over a neighborhood of each expected workload. Additionally, an uncertainty tuning parameter controls the size of this neighborhood, thereby allowing the output tunings to be conservative or optimistic. Through both model-based and extensive experimental evaluation of Endure in the state-of-the-art LSM-based storage engine, RocksDB, we show that the robust tuning methodology consistently outperforms classical tun-ing strategies. We benchmark Endure using 15 workload templates that generate more than 10000 unique noisy workloads. The robust tunings output by Endure lead up to a 5$\times$ improvement in through-put in presence of uncertainty. On the flip side, when the observed workload exactly matches the expected one, Endure tunings have negligible performance loss.


翻译:与其它数据库架构类似,LSM树也考虑到预期工作量的信息(例如,阅读书写,点对范围查询),以便通过调试优化其业绩。然而,在像云一样的共享基础设施中运行,由于多重强度和现代应用程序的快速演变性质,工作量具有一定程度的不确定性。静态调整速度将这种混合工作量的变异性降低,从而提供一个不一致和总体的次优性业绩。为了解决这一问题,我们引入了Endure-在工作量不确定性面前调试LSM树的新模式。具体地说,我们侧重于压缩政策的选择、规模拉皮奥和记忆分配对整个业绩的影响。Eture认为,通过高压工作量的强劲配置,建议调整以最坏的情况为基础,通过每个预期工作量的区进行最坏的调试算。此外,不确定性调调度参数控制了这个区域中最不固定的存储速度,从而使得最终值的存储方法能够持续调整。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
30+阅读 · 2021年7月7日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员