We present dynamic algorithms with polylogarithmic update time for estimating the size of the maximum matching of a graph undergoing edge insertions and deletions with approximation ratio strictly better than $2$. Specifically, we obtain a $1+\frac{1}{\sqrt{2}}+\epsilon\approx 1.707+\epsilon$ approximation in bipartite graphs and a $1.973+\epsilon$ approximation in general graphs. We thus answer in the affirmative the major open question first posed in the influential work of Onak and Rubinfeld (STOC'10) and repeatedly asked in the dynamic graph algorithms literature. Our randomized algorithms also work against an adaptive adversary and guarantee worst-case polylog update time, both w.h.p. Our algorithms are based on simulating new two-pass streaming matching algorithms in the dynamic setting. Our key new idea is to invoke the recent sublinear-time matching algorithm of Behnezhad (FOCS'21) in a white-box manner to efficiently simulate the second pass of our streaming algorithms, while bypassing the well-known vertex-update barrier.
翻译:我们提出了动态算法, 并用多元数更新时间来估计正在边缘插入和删除的图表的最大匹配大小, 其近似率严格高于$2。 具体地说, 我们在双面图中获得了 1 $\frac{ 1\\ sqrt{2\\\\ ⁇ epsilon\ approx 1. 707\ ⁇ epsilon$ 近似值, 在一般图中获得了 1973\ ⁇ epsilon$ 近似值。 因此, 我们以肯定的方式回答在Onak 和 Rubinfeld (STOC' 10) 的有影响力的工作中首次提出、 在动态图表算法文献中反复提出的问题。 我们随机化的算法还针对适应性对手, 并保证了最坏的多例更新时间, 两者都是 w. h. p. 。 我们的算法基于模拟动态环境中新的双向流相匹配算法。 我们的关键新想法是以白箱方式引用最近的亚线段匹配算法( FOCS'21), 以有效模拟我们流算算算算法的第二通过, 同时绕绕了众所周知的 。