The emergence of connected vehicles is driven by increasing customer and regulatory demands. To meet these, more complex software applications, some of which require service-based cloud and edge backends, are developed. When new software is deployed however, the high complexity and interdependencies between components can lead to unforeseen side effects in other system parts. As such, it becomes more challenging to recognize whether deviations to the intended system behavior are occurring, ultimately resulting in higher monitoring efforts and slower responses to errors. To overcome this problem, a simulation of the cloud environment running in parallel to the system is proposed. This approach enables the live comparison between simulated and real cloud behavior. Therefore, a concept is developed mirroring the existing cloud system into a simulation. To collect the necessary data, an observability platform is presented, capturing telemetry and architecture information. Subsequently, a simulation environment is designed that converts the architecture into a simulation model and simulates its dynamic workload by utilizing captured communication data. The proposed concept is evaluated in a real-world application scenario for electric vehicle charging: Vehicles can apply for an unoccupied charging station at a cloud service backend, the latter which manages all incoming requests and performs the assignment. Benchmarks are conducted by comparing the collected telemetry data with the simulated results under different loads and injected faults. The results show that regular cloud behavior is mirrored well by the simulation and that misbehavior due to fault injection is well visible, indicating that simulations are a promising data source for anomaly detection in connected vehicle cloud environments during operation.
翻译:暂无翻译