The emergence of connected vehicles is driven by increasing customer and regulatory demands. To meet these, more complex software applications, some of which require service-based cloud and edge backends, are developed. When new software is deployed however, the high complexity and interdependencies between components can lead to unforeseen side effects in other system parts. As such, it becomes more challenging to recognize whether deviations to the intended system behavior are occurring, ultimately resulting in higher monitoring efforts and slower responses to errors. To overcome this problem, a simulation of the cloud environment running in parallel to the system is proposed. This approach enables the live comparison between simulated and real cloud behavior. Therefore, a concept is developed mirroring the existing cloud system into a simulation. To collect the necessary data, an observability platform is presented, capturing telemetry and architecture information. Subsequently, a simulation environment is designed that converts the architecture into a simulation model and simulates its dynamic workload by utilizing captured communication data. The proposed concept is evaluated in a real-world application scenario for electric vehicle charging: Vehicles can apply for an unoccupied charging station at a cloud service backend, the latter which manages all incoming requests and performs the assignment. Benchmarks are conducted by comparing the collected telemetry data with the simulated results under different loads and injected faults. The results show that regular cloud behavior is mirrored well by the simulation and that misbehavior due to fault injection is well visible, indicating that simulations are a promising data source for anomaly detection in connected vehicle cloud environments during operation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员