Cardinality estimation is perhaps the simplest non-trivial statistical problem that can be solved via sketching. Industrially-deployed sketches like HyperLogLog, MinHash, and PCSA are mergeable, which means that large data sets can be sketched in a distributed environment, and then merged into a single sketch of the whole data set. In the last decade a variety of sketches have been developed that are non-mergeable, but attractive for other reasons. They are simpler, their cardinality estimates are strictly unbiased, and they have substantially lower variance. We evaluate sketching schemes on a reasonably level playing field, in terms of their memory-variance product (MVP). E.g., a sketch that occupies $5m$ bits and whose relative variance is $2/m$ (standard error $\sqrt{2/m}$) has an MVP of $10$. Our contributions are as follows. Cohen and Ting independently discovered what we call the Martingale transform for converting a mergeable sketch into a non-mergeable sketch. We present a simpler way to analyze the limiting MVP of Martingale-type sketches. We prove that the \Martingale{} transform is optimal in the non-mergeable world, and that \Martingale{} \fishmonger{} in particular is optimal among linearizable sketches, with an MVP of $H_0/2 \approx 1.63$. E.g., this is circumstantial evidence that to achieve 1\% standard error, we cannot do better than a 2 kilobyte sketch. \Martingale{} \fishmonger{} is neither simple nor practical. We develop a new mergeable sketch called \Curtain{} that strikes a nice balance between simplicity and efficiency, and prove that \Martingale{} \Curtain{} has limiting $\MVP\approx 2.31$. It can be updated with $O(1)$ memory accesses and it has lower empirical variance than \Martingale{} \LogLog, a practical non-mergeable version of HyperLogLog.


翻译:红心估计或许是最简单的非三角统计问题, 可以通过草图解决。 我们从工业角度评价平坦的素描方案, 包括超LogLog、 MinHash和PCSA。 这意味着大型数据集可以在分布式环境中被素描, 然后合并成整个数据集的单一草图。 在过去的十年里, 开发了各种不可复制的素描, 但出于其他原因具有吸引力。 它们更简单, 其基数估计完全没有偏差, 并且有显著的差幅。 我们在一个合理的实绩游戏场上评价素描方案, 也就是他们的记忆- 变异性产品( MVPL)、 E. g.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
A Sketch-Based System for Semantic Parsing
Arxiv
4+阅读 · 2019年9月12日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
5+阅读 · 2017年7月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员