We present a new finite-sample analysis of M-estimators of locations in $\mathbb{R}^d$ using the tool of the influence function. In particular, we show that the deviations of an M-estimator can be controlled thanks to its influence function (or its score function) and then, we use concentration inequality on M-estimators to investigate the robust estimation of the mean in high dimension in a corrupted setting (adversarial corruption setting) for bounded and unbounded score functions. For a sample of size $n$ and covariance matrix $\Sigma$, we attain the minimax speed $\sqrt{Tr(\Sigma)/n}+\sqrt{\|\Sigma\|_{op}\log(1/\delta)/n}$ with probability larger than $1-\delta$ in a heavy-tailed setting. One of the major advantages of our approach compared to others recently proposed is that our estimator is tractable and fast to compute even in very high dimension with a complexity of $O(nd\log(Tr(\Sigma)))$ where $n$ is the sample size and $\Sigma$ is the covariance matrix of the inliers. In practice, the code that we make available for this article proves to be very fast.


翻译:我们用影响函数工具对美元(mathbb{R ⁇ d$)的测算器进行了新的有限抽样分析。 特别是, 我们显示, M- 测算器的偏差可以通过影响函数( 或分数函数) 来控制。 然后, 我们用M- 估测器的集中不平等来调查对受约束和未受约束的得分函数在腐败环境中( 对抗性腐败设置) 高维度平均值的可靠估计。 对于以美元和共差矩阵( 美元) 的抽样来说, 我们的测算器既简单又迅速, 也非常高的尺寸与美元( 美元) 的复杂度( 美元) 达到迷你速 $( tr) / n ⁇ qr( sqr) / náqrqr ⁇ sgigmaççççççççlog( 1/\\\\ delta)/n 美元( 美元) 的偏差, 概率大于1\ delta$( ) 美元, 与最近提议的其他方法相比, 我们的主要优点是, 我们的估测算器可以快速的比。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
98+阅读 · 2020年12月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【NeurIPS2020】基于能量的分布外检测
专知会员服务
14+阅读 · 2020年10月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
98+阅读 · 2020年12月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【NeurIPS2020】基于能量的分布外检测
专知会员服务
14+阅读 · 2020年10月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员