The problem of portfolio management represents an important and challenging class of dynamic decision making problems, where rebalancing decisions need to be made over time with the consideration of many factors such as investors preferences, trading environments, and market conditions. In this paper, we present a new portfolio policy network architecture for deep reinforcement learning (DRL)that can exploit more effectively cross-asset dependency information and achieve better performance than state-of-the-art architectures. In particular, we introduce a new property, referred to as \textit{asset permutation invariance}, for portfolio policy networks that exploit multi-asset time series data, and design the first portfolio policy network, named WaveCorr, that preserves this invariance property when treating asset correlation information. At the core of our design is an innovative permutation invariant correlation processing layer. An extensive set of experiments are conducted using data from both Canadian (TSX) and American stock markets (S&P 500), and WaveCorr consistently outperforms other architectures with an impressive 3%-25% absolute improvement in terms of average annual return, and up to more than 200% relative improvement in average Sharpe ratio. We also measured an improvement of a factor of up to 5 in the stability of performance under random choices of initial asset ordering and weights. The stability of the network has been found as particularly valuable by our industrial partner.


翻译:证券组合管理问题是一个重要而具有挑战性的动态决策问题,需要随着时间的考虑投资者偏好、贸易环境和市场条件等许多因素来重新平衡决策。在本文件中,我们为深强化学习(DRL)提出了一个新的组合政策网络架构,可以更有效地利用跨资产依赖信息,并取得比最先进的结构更好的业绩。特别是,我们引入了一种新的财产,称为“Textit{asset 变异性”),用于利用多资产时间序列数据的投资组合政策网络,并设计了第一个组合政策网络,名为“WaveCorr”,在处理资产相关性信息时保留了这种变异性财产。我们设计的核心是创新的变异性相关处理层。我们利用加拿大(TSX)和美国股票市场(S & P 500)的数据进行了广泛的实验,WaveCorr始终优于其他结构,平均年回报率为3%-25%的绝对改善,以及平均资产回报率超过200%的投资组合政策网络相对改善幅度。我们发现,在平均资产稳定度方面,在初步稳定度上,我们根据资产稳定度的概率系数进行了5次的改进。

0
下载
关闭预览

相关内容

ACM SIGACCESS Conference on Computers and Accessibility是为残疾人和老年人提供与计算机相关的设计、评估、使用和教育研究的首要论坛。我们欢迎提交原始的高质量的有关计算和可访问性的主题。今年,ASSETS首次将其范围扩大到包括关于计算机无障碍教育相关主题的原创高质量研究。官网链接:http://assets19.sigaccess.org/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Image Captioning based on Deep Reinforcement Learning
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Image Captioning based on Deep Reinforcement Learning
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员