Can models with particular structure avoid being biased towards spurious correlation in out-of-distribution (OOD) generalization? Peters et al. (2016) provides a positive answer for linear cases. In this paper, we use a functional modular probing method to analyze deep model structures under OOD setting. We demonstrate that even in biased models (which focus on spurious correlation) there still exist unbiased functional subnetworks. Furthermore, we articulate and demonstrate the functional lottery ticket hypothesis: full network contains a subnetwork that can achieve better OOD performance. We then propose Modular Risk Minimization to solve the subnetwork selection problem. Our algorithm learns the subnetwork structure from a given dataset, and can be combined with any other OOD regularization methods. Experiments on various OOD generalization tasks corroborate the effectiveness of our method.
翻译:带有特殊结构的模型能否避免偏向分配外(OOD)一般化的虚假关联? Peters 等人( ) 提供了线性案例的正面答案。 在本文中,我们使用功能模块测试方法分析OOD设置下的深层模型结构。我们证明,即使在偏向模型(侧重于虚假关联)中,仍然存在着公正的功能子网络。此外,我们阐述并展示了实用彩票假设:全网包含一个子网络,可以实现更好的 OOD 性能。然后我们提出模块风险最小化以解决子网络选择问题。我们的算法从给定数据集中学习子网络结构,并且可以与其它OOD正规化方法相结合。关于各种OOD一般化任务的实验证实了我们的方法的有效性。