In this paper, the theory of McCarthy's extensional arrays enriched with a maxdiff operation (this operation returns the biggest index where two given arrays differ) is proposed. It is known from the literature that a diff operation is required for the theory of arrays in order to enjoy the Craig interpolation property at the quantifier-free level. However, the diff operation introduced in the literature is merely instrumental to this purpose and has only a purely formal meaning (it is obtained from the Skolemization of the extensionality axiom). Our maxdiff operation significantly increases the level of expressivity; however, obtaining interpolation results for the resulting theory becomes a surprisingly hard task. We obtain such results via a thorough semantic analysis of the models of the theory and of their amalgamation properties. The results are modular with respect to the index theory and it is shown how to convert them into concrete interpolation algorithms via a hierarchical approach.


翻译:在本文中,提出了McCarthy的扩展阵列的理论,该理论在最大操作中丰富了最大功率(此操作返回了两个给定阵列不同的最大指数) 。 从文献中可以知道,为了在无限定值水平上享受Craig内插属性,对阵列理论需要进行 diff 操作,以享受Craig内插属性。然而,文献中引入的 diff 操作只是对这一目的有用,而且只有纯粹的形式意义( 它来自扩展性Axiom的Skolemiz化 ) 。 我们的最大化操作极大地提高了表达性; 然而, 获取由此得出的理论的内插结果是一项令人惊讶的艰巨任务。 我们通过对理论模型及其合并特性的模型进行彻底的语义分析来获得这样的结果。 其结果与指数理论有关是模块化的,并展示了如何通过等级方法将其转换为具体的内插算法。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度学习自然语言处理概述,116页ppt,Jiří Materna
专知会员服务
79+阅读 · 2020年3月10日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
已删除
将门创投
4+阅读 · 2017年11月1日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月14日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度学习自然语言处理概述,116页ppt,Jiří Materna
专知会员服务
79+阅读 · 2020年3月10日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
已删除
将门创投
4+阅读 · 2017年11月1日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员