In this paper we research a model of multilayer circuits with a single logical layer. We consider $\lambda$-separable graphs as a support for circuits. We establish the Shannon function lower bound $\max \bigl(\frac{2^n}{n}, \frac{2^n (1 - \lambda)}{\log k} \bigr)$ for this type of circuits where $k$ is the number of layers. For $d$-dimensional graphs, which are $\lambda$-separable for $\lambda = \frac{d - 1}{d}$, this gives the Shannon function lower bound $\frac{2^n}{\min(n, d \log k)}$. For multidimensional rectangular circuits the proved lower bound asymptotically matches to the upper bound.
翻译:在本文中, 我们研究一个具有单一逻辑层的多层电路模型。 我们认为, $\ lambda$- 可分离的图形可以支持电路。 我们建立香农函数的较低约束值$\ max\ bigl(\ frac{ 2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\