In the study of life tables the random variable of interest is usually assumed discrete since mortality rates are studied for integer ages. In dynamic life tables a time domain is included to account for the evolution effect of the hazard rates in time. In this article we follow a survival analysis approach and use a nonparametric description of the hazard rates. We construct a discrete time stochastic processes that reflects dependence across age as well as in time. This process is used as a bayesian nonparametric prior distribution for the hazard rates for the study of evolutionary life tables. Prior properties of the process are studied and posterior distributions are derived. We present a simulation study, with the inclusion of right censored observations, as well as a real data analysis to show the performance of our model.


翻译:在生命表研究中,由于对整龄死亡率进行研究,随机利息变量通常被假定为离散的;在动态生命表中,包含一个时间域,以说明危险率在时间上的演变效应;在本条中,我们采用生存分析方法,对危险率进行非参数性描述;我们建造了一个反映不同年龄和时间之间依赖性的离散时间随机随机分析过程;这个过程是用作用于研究进化生命表的危险率的海湾非参数性先前分布;研究该过程的先前特性,并得出后方分布;我们提出模拟研究,包括受右侧检查的观察,以及真实的数据分析,以显示我们模型的性能。

0
下载
关闭预览

相关内容

专知会员服务
37+阅读 · 2021年4月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2020年9月29日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年4月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员