The contribution of this paper includes two aspects. First, we study the lower bound complexity for the minimax optimization problem whose objective function is the average of $n$ individual smooth component functions. We consider Proximal Incremental First-order (PIFO) algorithms which have access to gradient and proximal oracle for each individual component. We develop a novel approach for constructing adversarial problems, which partitions the tridiagonal matrix of classical examples into $n$ groups. This construction is friendly to the analysis of incremental gradient and proximal oracle. With this approach, we demonstrate the lower bounds of first-order algorithms for finding an $\varepsilon$-suboptimal point and an $\varepsilon$-stationary point in different settings. Second, we also derive the lower bounds of minimization optimization with PIFO algorithms from our approach, which can cover the results in \citep{woodworth2016tight} and improve the results in \citep{zhou2019lower}.


翻译:本文的贡献包括两个方面。 首先, 我们研究微型最大优化问题的较低约束复杂性, 其客观功能是平均美元, 单个光滑元件功能。 我们考虑每个元件都可访问梯度和准角的精度一级算法( PIFO ) 。 我们开发了一种新颖的方法来构建对抗性问题, 将经典示例的三对角矩阵分割成 $美元 组 。 这个构造有利于分析递增梯度和准极分。 通过这个方法, 我们展示了在不同的环境下找到 $\ varepsilon 的次最佳点和 $\ varepsilon$ 固定点的第一等算法( PIFO 算法) 的较低界限。 其次, 我们还从我们的方法中得出了与 PIFO 算法的最小度优化的较低界限, 它可以覆盖 citep{woodworth2016tight}, 并改进 \ citep{x2019 lower} 的结果 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员