Previous unsupervised monocular depth estimation methods mainly focus on the day-time scenario, and their frameworks are driven by warped photometric consistency. While in some challenging environments, like night, rainy night or snowy winter, the photometry of the same pixel on different frames is inconsistent because of the complex lighting and reflection, so that the day-time unsupervised frameworks cannot be directly applied to these complex scenarios. In this paper, we investigate the problem of unsupervised monocular depth estimation in certain highly complex scenarios. We address this challenging problem by using domain adaptation, and a unified image transfer-based adaptation framework is proposed based on monocular videos in this paper. The depth model trained on day-time scenarios is adapted to different complex scenarios. Instead of adapting the whole depth network, we just consider the encoder network for lower computational complexity. The depth models adapted by the proposed framework to different scenarios share the same decoder, which is practical. Constraints on both feature space and output space promote the framework to learn the key features for depth decoding, and the smoothness loss is introduced into the adaptation framework for better depth estimation performance. Extensive experiments show the effectiveness of the proposed unsupervised framework in estimating the dense depth map from the night-time, rainy night-time and snowy winter images.
翻译:先前无人监督的单眼深度估算方法主要侧重于日间情景,其框架是由扭曲的光度测量一致性驱动的。虽然在一些富有挑战性的环境中,如夜间、雨夜或雪冬,不同框架上的同一像素的光度测量不一致,因为照明和反射复杂,因此无法直接将这些复杂情景应用在白天未经监督的单眼深度估算框架中。在本文件中,我们调查在某些高度复杂的情景中未经监督的单眼深度估算问题。我们通过使用域适应来应对这一具有挑战性的问题,并根据本文单眼视频提出了统一的图像转换适应框架。在白天情景方面受过培训的深度模型适应不同的复杂情景。我们只是考虑对整个深度网络进行调整,而没有考虑对较低计算复杂性的编码网络。根据拟议框架对不同情景进行调整的深度模型具有相同的解码作用,这是实用的。对地貌空间和输出空间的限制促进了学习深度解码关键特征的框架,而基于图像转换的统一适应框架是以本文单眼视频为基础提出的。对日间情景假设的深度模型被引入到更深的深度估算中,从更深的深度深度估算中展示了拟议的冬季图像。深度的深度的深度模型。