Tukey's depth offers a powerful tool for nonparametric inference and estimation, but also encounters serious computational and methodological difficulties in modern statistical data analysis. This paper studies how to generalize and compute Tukey-type depths in multi-dimensions. A general framework of influence-driven polished subspace depth, which emphasizes the importance of the underlying influence space and discrepancy measure, is introduced. The new matrix formulation enables us to utilize state-of-the-art optimization techniques to develop scalable algorithms with implementation ease and guaranteed fast convergence. In particular, half-space depth as well as regression depth can now be computed much faster than previously possible, with the support from extensive experiments. A companion paper is also offered to the reader in the same issue of this journal.


翻译:Tukey的深度为非参数推论和估算提供了强有力的工具,但也在现代统计数据分析中遇到了严重的计算和方法困难。本文研究如何在多维范围内对 Tukey 型深度进行概括和计算。引入了一个受撞击驱动的抛光子空间深度总体框架,其中强调了影响空间和差异计量的重要性。新的矩阵配方使我们能够利用最先进的优化技术开发可缩放的算法,便于实施和保证快速趋同。特别是,在广泛实验的支持下,半空深度和回归深度现在可以比以前更快地计算。还在同一期期刊上向读者提供了一份配套文件。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
119+阅读 · 2020年3月30日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
On Variance Estimation of Random Forests
Arxiv
0+阅读 · 2022年2月18日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
16+阅读 · 2021年7月18日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员