We present an index of dependence that allows one to measure the joint or mutual dependence of a $d$-dimensional random vector with $d>2$. The index is based on a $d$-dimensional Kendall process. We further propose a standardized version of our index of dependence that is easy to interpret, and provide an algorithm for its computation. We discuss tests of total independence based on consistent estimates of the area under the Kendall curve. We evaluate the performance of our procedures via simulation, and apply our methods to a real data set.
翻译:我们提出了一个依赖指数,允许一个人用$d>2美元衡量一个以美元计维随机矢量的共或相互依赖性。该指数基于一个以美元计维的肯德尔进程。我们进一步提出一个易于解释的我们依赖性指数的标准版本,并提供计算该指数的算法。我们讨论基于肯德尔曲线下区域一致估计的完全独立的测试。我们通过模拟评估我们程序的业绩,并将我们的方法应用于一个真实的数据集。