We consider the Steiner tree problem on graphs where we are given a set of nodes and the goal is to find a tree sub-graph of minimum weight that contains all nodes in the given set, potentially including additional nodes. This is a classical NP-hard combinatorial optimisation problem. In recent years, a machine learning framework called learning-to-prune has been successfully used for solving a diverse range of combinatorial optimisation problems. In this paper, we use this learning framework on the Steiner tree problem and show that even on this problem, the learning-to-prune framework results in computing near-optimal solutions at a fraction of the time required by commercial ILP solvers. Our results underscore the potential of the learning-to-prune framework in solving various combinatorial optimisation problems.
翻译:我们在图表中考虑了施泰纳树的问题,在图表中,我们得到了一套节点,目标是找到一个包含给定集中所有节点的树底分层,其中可能包含所有节点,包括其他节点。这是一个典型的NP硬组合组合优化问题。近年来,一个称为“学习到庄园”的机器学习框架被成功地用于解决多种组合式优化问题。在本文中,我们使用这个关于施泰纳树问题的学习框架,并表明,即使在此问题上,学习到春间框架的结果是,在商业的ILP解答者所要求的时间的一小部分时间计算接近最佳的解决方案。我们的成果强调了学习到春框架在解决各种组合式优化问题方面的潜力。