Segmentation of brain magnetic resonance images (MRI) is crucial for the analysis of the human brain and diagnosis of various brain disorders. The drawbacks of time-consuming and error-prone manual delineation procedures are aimed to be alleviated by atlas-based and supervised machine learning methods where the former methods are computationally intense and the latter methods lack a sufficiently large number of labeled data. With this motivation, we propose CORPS, a semi-supervised segmentation framework built upon a novel atlas-based pseudo-labeling method and a 3D deep convolutional neural network (DCNN) for 3D brain MRI segmentation. In this work, we propose to generate expert-level pseudo-labels for unlabeled set of images in an order based on a local intensity-based similarity score to existing labeled set of images and using a novel atlas-based label fusion method. Then, we propose to train a 3D DCNN on the combination of expert and pseudo labeled images for binary segmentation of each anatomical structure. The binary segmentation approach is proposed to avoid the poor performance of multi-class segmentation methods on limited and imbalanced data. This also allows to employ a lightweight and efficient 3D DCNN in terms of the number of filters and reserve memory resources for training the binary networks on full-scale and full-resolution 3D MRI volumes instead of 2D/3D patches or 2D slices. Thus, the proposed framework can encapsulate the spatial contiguity in each dimension and enhance context-awareness. The experimental results demonstrate the superiority of the proposed framework over the baseline method both qualitatively and quantitatively without additional labeling cost for manual labeling.
翻译:脑磁共振图像的分解(MRI)对于分析人类大脑和诊断各种脑紊乱至关重要。 耗时和容易出错的人工剖析程序的缺点,旨在通过基于地图集和受监督的机器学习方法来减轻。 以前的方法在计算上十分密集,而后一种方法则缺乏足够多的标签数据。 有了这个动机, 我们提议CORPS, 一个半监督的分解框架, 以基于新地图的假标签方法为基础, 以及3D 大脑D 内核分解的3D 深层直流神经网络(DCNNN) 。 在这项工作中, 我们提议为未贴标签的一组图像制作专家级伪标签, 以基于地图集的精度为基础, 后者缺乏足够数量的标签。 然后, 我们提议为每个解析结构的二维度和三维深度结构的拟议的专家和假标签层面图像组合组合。 双分解法法, 避免多维D 级D 的精度框架的精度伪度伪度伪度伪度伪度伪度, 在二维度 3级的基值 基值 基值 基值 模型 模型 的计算 工具 的精度 的精度 的精度 的精度 的精度 的精度