Recommender systems have become the dominant means of curating cultural content, significantly influencing individual cultural experience. Since recommender systems tend to optimize for personalized user experience, they can overlook impacts on cultural experience in the aggregate. After demonstrating that existing metrics do not center culture, we introduce a new metric, commonality, that measures the degree to which recommendations familiarize a given user population with specified categories of cultural content. We developed commonality through an interdisciplinary dialogue between researchers in computer science and the social sciences and humanities. With reference to principles underpinning public service media systems in democratic societies, we identify universality of address and content diversity in the service of strengthening cultural citizenship as particularly relevant goals for recommender systems delivering cultural content. We develop commonality as a measure of recommender system alignment with the promotion of content toward a shared cultural experience across a population of users. We empirically compare the performance of recommendation algorithms using commonality with existing metrics, demonstrating that commonality captures a novel property of system behavior complementary to existing metrics. Alongside existing fairness and diversity metrics, commonality contributes to a growing body of scholarship developing `public good' rationales for machine learning systems.


翻译:建议系统已成为整理文化内容的主要手段,极大地影响个人文化经验。由于建议系统倾向于优化个人化用户经验,因此可以忽略对总体文化经验的影响。在证明现有衡量标准不以文化为中心之后,我们引入了新的衡量标准、共性,衡量建议使特定用户群体熟悉特定文化内容类别的程度。我们通过计算机科学和社会科学及人文学的研究者之间的跨学科对话发展了共同性。关于民主社会公共服务媒体系统的基本原则,我们确定,在加强文化公民意识服务方面,地址和内容多样性的普遍性是提供文化内容的建议系统特别相关的目标。我们发展共同性,作为建议系统与促进内容在用户群体中共享文化经验的衡量标准。我们用与现有衡量标准的共性对建议算法的绩效进行实证比较,表明共性反映了与现有衡量标准相辅相成的系统行为的新特性。除了现有的公平和多样性衡量标准外,共同性有助于不断增长的奖学金体系发展`公共良好'理由。

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员