In this paper we propose an optimal predictor of a random variable that has either an infinite mean or an infinite variance. The method consists of transforming the random variable such that the transformed variable has a finite mean and finite variance. The proposed predictor is a generalized arithmetic mean which is similar to the notion of certainty price in utility theory. Typically, the transformation consists of a parametric family of bijections, in which case the parameter might be chosen to minimize the prediction error in the transformed coordinates. The statistical properties of the estimator of the proposed predictor are studied, and confidence intervals are provided. The performance of the procedure is illustrated using simulated and real data.
翻译:在本文中,我们提出了一种随机变量的最优预测方法,该随机变量具有无限均值或无限方差。该方法包括将随机变量转化为具有有限均值和方差的变量。所提出的预测器是一种广义算术平均,类似于实用理论中的确定性价格概念。通常,转换包括一类参数化的双射函数族,参数选择可能旨在最小化转换坐标下的预测误差。对所提出的预测器的估计量的统计属性进行了研究,并提供了置信区间。使用模拟和真实数据说明了该方法的性能。