Chan, Har-Peled, and Jones [SICOMP 2020] developed locality-sensitive orderings (LSO) for Euclidean space. A $(\tau,\rho)$-LSO is a collection $\Sigma$ of orderings such that for every $x,y\in\mathbb{R}^d$ there is an ordering $\sigma\in\Sigma$, where all the points between $x$ and $y$ w.r.t. $\sigma$ are in the $\rho$-neighborhood of either $x$ or $y$. In essence, LSO allow one to reduce problems to the $1$-dimensional line. Later, Filtser and Le [STOC 2022] developed LSO's for doubling metrics, general metric spaces, and minor free graphs. For Euclidean and doubling spaces, the number of orderings in the LSO is exponential in the dimension, which made them mainly useful for the low dimensional regime. In this paper, we develop new LSO's for Euclidean, $\ell_p$, and doubling spaces that allow us to trade larger stretch for a much smaller number of orderings. We then use our new LSO's (as well as the previous ones) to construct path reporting low hop spanners, fault tolerant spanners, reliable spanners, and light spanners for different metric spaces. While many nearest neighbor search (NNS) data structures were constructed for metric spaces with implicit distance representations (where the distance between two metric points can be computed using their names, e.g. Euclidean space), for other spaces almost nothing is known. In this paper we initiate the study of the labeled NNS problem, where one is allowed to artificially assign labels (short names) to metric points. We use LSO's to construct efficient labeled NNS data structures in this model.


翻译:chan, Har- Peled, 和 Jones [ SINSCOMP 2020] 为 Euclidean 空间开发了对地敏感订单(LSO) 。 $( tau,\ rho) $- LSO 是一个收集$\Sigma$的订单, 这样每个$, y\in\ mathbb{R<unk> d$ 都有一个订单 $\ sigma$\ 美元( 美元到 NSCOMP 2020 ) 。 $\ sgma$( 美元到 NSCOMP 2020 ) 。 美元( 美元到 NSCOMP 2020 ) 。 美元( 美元到 美元到 美元, 美元到 美元, 美元, 美元, 美元, 美元到 美元, 美元, 美元, 美元到 美元, 美元, 美元, 美元, 美元到 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 数字, 数字, 数字, 数字, 开始一个, 数字, 。</s>

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月22日
Arxiv
0+阅读 · 2023年4月22日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员