Two recent lower bounds on the compressibility of repetitive sequences, $\delta \le \gamma$, have received much attention. It has been shown that a length-$n$ string $S$ over an alphabet of size $\sigma$ can be represented within the optimal $O(\delta\log\tfrac{n\log \sigma}{\delta \log n})$ space, and further, that within that space one can find all the $occ$ occurrences in $S$ of any length-$m$ pattern in time $O(m\log n + occ \log^\epsilon n)$ for any constant $\epsilon>0$. Instead, the near-optimal search time $O(m+({occ+1})\log^\epsilon n)$ has been achieved only within $O(\gamma\log\frac{n}{\gamma})$ space. Both results are based on considerably different locally consistent parsing techniques. The question of whether the better search time could be supported within the $\delta$-optimal space remained open. In this paper, we prove that both techniques can indeed be combined to obtain the best of both worlds: $O(m+({occ+1})\log^\epsilon n)$ search time within $O(\delta\log\tfrac{n\log \sigma}{\delta \log n})$ space. Moreover, the number of occurrences can be computed in $O(m+\log^{2+\epsilon}n)$ time within $O(\delta\log\tfrac{n\log \sigma}{\delta \log n})$ space. We also show that an extra sublogarithmic factor on top of this space enables optimal $O(m+occ)$ search time, whereas an extra logarithmic factor enables optimal $O(m)$ counting time.
翻译:(delta\log\log=loglial>0美元) 的字符串美元。 相反,接近最佳的搜索时间 $O(m+(c+1})\logepsilon n) 只能在 $(gama\log\groc{n) 的空间内实现,此外,在这个空间内,所有美元在任何长度-美元模式的美元(美元)中都能找到(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元(美元) 美元(美元) 美元(美元) 美元(美元(美元) 美元) 美元(美元(美元) 美元) 美元(美元) 美元(美元(美元) 美元(美元) 美元) 美元(美元) 的搜索) 的搜索(美元(美元) 也顯示(美元) 的搜索(美元) 的搜索(美元) 的搜索(美元) 也顯示(美元) 兩數(美元)</s>