Existing Scene Text Recognition (STR) methods typically use a language model to optimize the joint probability of the 1D character sequence predicted by a visual recognition (VR) model, which ignore the 2D spatial context of visual semantics within and between character instances, making them not generalize well to arbitrary shape scene text. To address this issue, we make the first attempt to perform textual reasoning based on visual semantics in this paper. Technically, given the character segmentation maps predicted by a VR model, we construct a subgraph for each instance, where nodes represent the pixels in it and edges are added between nodes based on their spatial similarity. Then, these subgraphs are sequentially connected by their root nodes and merged into a complete graph. Based on this graph, we devise a graph convolutional network for textual reasoning (GTR) by supervising it with a cross-entropy loss. GTR can be easily plugged in representative STR models to improve their performance owing to better textual reasoning. Specifically, we construct our model, namely S-GTR, by paralleling GTR to the language model in a segmentation-based STR baseline, which can effectively exploit the visual-linguistic complementarity via mutual learning. S-GTR sets new state-of-the-art on six challenging STR benchmarks and generalizes well to multi-linguistic datasets. Code is available at https://github.com/adeline-cs/GTR.


翻译:现有显示文本识别方法通常使用一种语言模型,优化视觉识别模型(VR)预测的 1D 字符序列的共同概率,该模型忽略了字符实例内和之间视觉语义学的2D空间背景,使其不完全概括到任意塑造场景文字。为了解决这一问题,我们首次尝试根据本文中的视觉语义进行文字推理。在技术上,鉴于VR 模型预测的字符分隔图,我们为每个实例绘制了一个子图,其中节点代表了其中的像素,根据空间相似性在节点之间添加边际。然后,这些子图通过根节点和完整图表相继连接,并合并成完整的图表。基于这个图,我们设计了一个基于视觉推理的图形进式推理网络(GTR ) 。GTR可以很容易地在具有代表性的TR模型中插入,以便通过更好的文字推理来改进它们的性能。具体地说,我们构建我们的模型,即S-GTR,通过它们之间的根基点节点连接GTR与语言模型平行连接,通过新的断式数据库,可以有效地利用STR-strevidustrisal-strismatial数据库数据库数据库数据库数据库,通过新的Strading stravidustrislismal-s-st-st-st-stal

7
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员