Dirichlet Process mixture models (DPMM) in combination with Gaussian kernels have been an important modeling tool for numerous data domains arising from biological, physical, and social sciences. However, this versatility in applications does not extend to strong theoretical guarantees for the underlying parameter estimates, for which only a logarithmic rate is achieved. In this work, we (re)introduce and investigate a metric, named Orlicz-Wasserstein distance, in the study of the Bayesian contraction behavior for the parameters. We show that despite the overall slow convergence guarantees for all the parameters, posterior contraction for parameters happens at almost polynomial rates in outlier regions of the parameter space. Our theoretical results provide new insight in understanding the convergence behavior of parameters arising from various settings of hierarchical Bayesian nonparametric models. In addition, we provide an algorithm to compute the metric by leveraging Sinkhorn divergences and validate our findings through a simulation study.
翻译:与Gaussian内核结合的Drichlet进程混合物模型(DPMM)是生物、物理和社会科学产生的许多数据领域的一个重要模型工具。然而,应用中的这种多功能性并没有扩大到基础参数估计的强有力的理论保障,而基础参数估计只达到对数率。在这项工作中,我们(重新)在对Bayesian收缩行为进行参数研究时,用名为Orlicz-Wasserstein的距离来调查和调查一个称为Orlicz-Wasserstein的参数。我们表明,尽管所有参数的总体趋同保证缓慢,但参数在参数空间的较远区域几乎以多元速率出现后继收缩。我们的理论结果为了解来自Bayesian等级非参数不同设置的参数的趋同行为提供了新的洞察力。此外,我们提供了一种算法,通过利用Sinkhorn的差异来计算参数,并通过模拟研究来验证我们的调查结果。