We introduce a new PAC-Bayes oracle bound for unbounded losses. This result can be understood as a PAC-Bayesian version of the Cram\'er-Chernoff bound. The proof technique relies on controlling the tails of certain random variables involving the Cram\'er transform of the loss. We highlight several applications of the main theorem. First, we show that our result naturally allows exact optimization of the free parameter on many PAC-Bayes bounds. Second, we recover and generalize previous results. Finally, we show that our approach allows working with richer assumptions that result in more informative and potentially tighter bounds. In this direction, we provide a general bound under a new ``model-dependent bounded CGF" assumption from which we obtain bounds based on parameter norms and log-Sobolev inequalities. All these bounds can be minimized to obtain novel posteriors.
翻译:暂无翻译