Graph-based reaction systems were recently introduced as a generalization of the intensely studied set-based reaction systems. They deal with simple edge-labeled directed graphs, and dynamic semantics of graph-based reaction systems is defined by graph surfing as a novel kind of graph transformation where, in a single surf step, reactions are applied to a subgraph of a given background graph yielding a successor subgraph. In this paper, we propose a categorical approach to reaction systems so that a wider spectrum of data structures becomes available on which reaction systems can be based. In this way, many types of graphs, hypergraphs, and graph-like structures are covered.


翻译:最近采用了基于图形的反应系统,作为密集研究的基于集成反应系统的概略。这些系统处理简单的边缘标签定向图表,而基于图形的反应系统的动态语义则被图形冲浪定义为一种新型的图形转换,在一次冲浪中,对产生后续子图的某一背景图的子集应用反应。在本文中,我们建议对反应系统采取明确的方法,以便有更广泛的数据结构可供反应系统使用。这样,许多类型的图表、高频图和像图表一样的结构都覆盖在内。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月3日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
6+阅读 · 2020年2月15日
Arxiv
10+阅读 · 2019年2月19日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年11月3日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员