The Bayesian Learning Rule provides a framework for generic algorithm design but can be difficult to use for three reasons. First, it requires a specific parameterization of exponential family. Second, it uses gradients which can be difficult to compute. Third, its update may not always stay on the manifold. We address these difficulties by proposing an extension based on Lie-groups where posteriors are parametrized through transformations of an arbitrary base distribution and updated via the group's exponential map. This simplifies all three difficulties for many cases, providing flexible parametrizations through group's action, simple gradient computation through reparameterization, and updates that always stay on the manifold. We use the new learning rule to derive a new algorithm for deep learning with desirable biologically-plausible attributes to learn sparse features. Our work opens a new frontier for the design of new algorithms by exploiting Lie-group structures.
翻译:贝叶斯学习规则为通用算法设计提供了一个框架,但可能由于三个原因难以使用。 首先,它要求指数式家庭的具体参数化。 其次,它使用可能难以计算的梯度。 第三,其更新可能并不总是停留在多元上。 我们提出以利小组为基础的扩展方案来解决这些困难,在利小组基础上,后人通过任意的基数分布转换和通过集团的指数式地图进行更新而得到平衡。这简化了许多案例的所有三个难题,通过小组的行动提供灵活的平衡化,通过重新校准的简单梯度计算,并更新始终停留在多元上的。我们使用新的学习规则来为深层学习一种新的算法,用可取的生物可变性特性学习稀薄特征。我们的工作为通过利用利小组结构设计新的算法开辟了新的前沿。</s>