Accurate downlink channel information is crucial to the beamforming design, but it is difficult to obtain in practice. This paper investigates a deep learning-based optimization approach of the downlink beamforming to maximize the system sum rate, when only the uplink channel information is available. Our main contribution is to propose a model-driven learning technique that exploits the structure of the optimal downlink beamforming to design an effective hybrid learning strategy with the aim to maximize the sum rate performance. This is achieved by jointly considering the learning performance of the downlink channel, the power and the sum rate in the training stage. The proposed approach applies to generic cases in which the uplink channel information is available, but its relation to the downlink channel is unknown and does not require an explicit downlink channel estimation. We further extend the developed technique to massive multiple-input multiple-output scenarios and achieve a distributed learning strategy for multicell systems without an inter-cell signalling overhead. Simulation results verify that our proposed method provides the performance close to the state of the art numerical algorithms with perfect downlink channel information and significantly outperforms existing data-driven methods in terms of the sum rate.


翻译:精确的下行链接频道信息对于波束成型设计至关重要,但在实践中很难获得。本文件调查了下行链接光束的深度学习优化方法,以便在只有上行链接频道信息的情况下,最大限度地实现系统和速率。我们的主要贡献是提出模型驱动学习技术,利用最佳下行链接光束结构来设计有效的混合学习战略,目的是最大限度地提高总和率性能。这是通过共同考虑下行链路频道的学习性能、动力和培训阶段的总和率来实现的。拟议方法适用于具有上行链路信息但与下行链路频道的关系不明的通用情况,不需要明确的下行链路频道估计。我们进一步将开发技术推广到大规模多输入多输出投影情景,并在没有细胞间信号管理的情况下为多细胞系统实现分布式学习战略。模拟结果证实,我们拟议的方法提供了与具有完美下行链路频道信息并大大超出现有数据驱动方法的精确数字算法状态。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员