This paper studies the problem of linear precoding for multiple-input multiple-output (MIMO) communication channels employing finite-alphabet signaling. Existing solutions typically suffer from high computational complexity due to costly computations of the constellation-constrained mutual information. In contrast to existing works, this paper takes a different path of tackling the MIMO precoding problem. Namely, a data-driven approach, based on deep learning, is proposed. In the offline training phase, a deep neural network learns the optimal solution on a set of MIMO channel matrices. This allows the reduction of the computational complexity of the precoder optimization in the online inference phase. Numerical results demonstrate the efficiency of the proposed solution vis-\`a-vis existing precoding algorithms in terms of significantly reduced complexity and close-to-optimal performance.
翻译:本文研究了使用有限负负数信号的多投入多输出(MIMO)通信渠道的线性预编码问题。由于计算星座受限制的相互信息费用高昂,现有解决方案通常具有很高的计算复杂性。与现有工作不同,本文件采取了不同的方法来解决IMO预编码问题。即提议了基于深层学习的数据驱动方法。在离线培训阶段,深神经网络在一组MIMO频道矩阵上学习了最佳解决方案。这样可以降低在线推断阶段前编码优化的计算复杂性。数字结果表明,拟议的解决方案相对于现有的预编码算算法而言,在大幅降低复杂性和接近最佳性能方面的效率。