Joint Super-Resolution and Inverse Tone-Mapping (joint SR-ITM) aims to increase the resolution and dynamic range of low-resolution and standard dynamic range images.Recent methods mainly resort to image decomposition techniques with the multi-branch network architecture.However, the rigid decomposition employed by these methods largely restricts their power on diverse images.To exploit its potential power, in this paper, we generalize the decomposition mechanism from the image domain to the broader feature domain. To this end, we propose a lightweight Feature Decomposition Aggregation Network (FDAN). In particular, we design a Feature Decomposition Block (FDB), which can achieve learnable separation of feature details and contrasts.By cascading FDBs, we can build up a Hierarchical Feature Decomposition Group for powerful multi-level feature decomposition.Moreover, we collect a new benchmark dataset for joint SR-ITM, \ie, SRITM-4K, which is large-scale and provides versatile scenarios for sufficient model training and evaluation.Experimental results on two benchmark datasets demonstrate that our FDAN is efficient and outperforms previous methods on joint SR-ITM.Our code and dataset will be publicly released.
翻译:超分辨率和反透面联合测绘(联合SR-ITM)旨在增加分辨率和动态范围低分辨率和标准动态范围图像的分辨率和动态范围。 最新方法主要采用多部门网络结构的图像分解技术。 但是,这些方法的僵硬分解在很大程度上限制了其在不同图像上的力量。 为了利用它的潜在力量,我们在本文件中将其分解机制从图像域推广到更广泛的特征域。 为此,我们提议建立一个轻量级地貌分解聚合网络(FDAN)。特别是,我们设计了一个地貌分解区块(FDB),它可以实现地貌细节和对比的可学习分解技术。By cascating FDB, 我们可以建立一个等级地貌分解组,用于强大的多级分解。Moreover,我们为联合SR-ITM、\ie、SRITM-4K收集了一套新的基准数据集,这是大型的,为充分的模型培训和评估提供了多功能的情景。 在前两个基准数据中,将显示我们之前的有效数据格式。