Language Models pretrained on large textual data have been shown to encode different types of knowledge simultaneously. Traditionally, only the features from the last layer are used when adapting to new tasks or data. We put forward that, when using or finetuning deep pretrained models, intermediate layer features that may be relevant to the downstream task are buried too deep to be used efficiently in terms of needed samples or steps. To test this, we propose a new layer fusion method: Depth-Wise Attention (DWAtt), to help re-surface signals from non-final layers. We compare DWAtt to a basic concatenation-based layer fusion method (Concat), and compare both to a deeper model baseline -- all kept within a similar parameter budget. Our findings show that DWAtt and Concat are more step- and sample-efficient than the baseline, especially in the few-shot setting. DWAtt outperforms Concat on larger data sizes. On CoNLL-03 NER, layer fusion shows 3.68-9.73% F1 gain at different few-shot sizes. The layer fusion models presented significantly outperform the baseline in various training scenarios with different data sizes, architectures, and training constraints.


翻译:在大量文本数据方面经过预先培训的语言模型显示,可以同时对不同类型的知识进行编码。传统上,在适应新的任务或数据时,只使用最后一层的特征。我们提出,在使用或微调深预先训练模型时,可能与下游任务有关的中间层特征埋得太深,无法在所需的样本或步骤方面有效使用。为了测试这一点,我们提议一种新的层融合方法:深度-注意(DWat),以帮助非最后层的再浮现信号。我们将DWat与基于基本聚合的层融合方法(Concat)进行比较,并将两者都与更深的模型基线进行比较 -- -- 都保存在类似的参数预算内。我们的调查结果显示,DWat和Concat比基线更有步骤和样本效率,特别是在几发的设置中。DWatt在更大的数据尺寸上比Concat更高级。关于Concat的CNER(DWL-03),层融合显示3.68-9.73 % F1在不同的小片尺寸上获得。在不同的层融合模型中展示了不同的基线,不同的培训模型和各种数据结构的制约。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员