项目名称: 晶体半导体芯光纤激光拉丝仪

项目编号: No.61227012

项目类型: 专项基金项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 王廷云

作者单位: 上海大学

项目金额: 290万元

中文摘要: 晶体半导体芯光纤具有高非线性、高拉曼增益、红外透明等优良特性,由其制成各种激光器、调制器、探测器等核心器件在前沿领域的研究中极具应用潜力。本项目针对现有拉丝设备温度控制难、拉丝过程材料易分解、成纤损耗大、缺陷多、单晶区短等问题,提出研究一种预热炉与CO2激光加热相结合的新热源,它以晶体半导体材料的特性为基础,利用激光与材料自身的光热作用形成芯包异质材料拉丝所需的渐变梯度温场分布。在渐变梯度温场中拉丝,能减小由材料熔点失配造成的界面应力,抑制低熔点半导体材料的分解。同时,在芯层中心产生的缺陷少及芯包界面区过渡平缓,更有利于降低光纤的损耗,提升光纤的性能。项目将研究激光与半导体光纤材料的作用机理,建立热熔融温区模型,设计激光热源光路系统和加热炉,实现熔融温区和温度场分布精确可控的激光拉丝仪器样机,用于新型晶体半导体芯光纤拉丝工艺和形成机理的研究,为特种光纤的原始创新工作提供良好的实验平台。

中文关键词: 光纤拉丝;激光加热;晶体半导体;半导体芯光纤;

英文摘要: The crystalline semiconductor core optical fiber, with good features of high nonlinearity, high Raman gain, and infrared transparent, can be made of a variety of key devices such as lasers, modulators and detectors, which have the potential to be used in many cutting edge research fields. This project proposes a new heat source, which combines a preheating furnace and CO2 laser heating, to solve the problems existing in the drawing equipment and the drawing process of this new kind of fiber, such as temperature control difficulty, material easily decomposed during the drawing process, high fiber attenuation, defects, short single crystalline domain, etc. Based on the characteristics of crystalline semiconductor material, the optical-thermal interaction between laser and material is used to form gradient temperature field distribution that core-cladding heterogeneous material drawing requires. Drawing fibers in the gradient temperature field can deduce the interface strain caused by the melting point mismatch and depress the decomposition of low-melting-point semiconductor materials. Meanwhile, less defects emerging in the core center and the core-cladding interface region smooth transition help to reduce the fiber loss and improve the performance of the fiber. This project will study the mechanism of the laser a

英文关键词: fiber drawing;laser heating;crystalline semiconductor;semiconductor core fiber;

成为VIP会员查看完整内容
0

相关内容

CVPR2022 | Sparse Transformer刷新点云目标检测的SOTA
专知会员服务
24+阅读 · 2022年3月9日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年10月9日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
神操作!RM让ResNet等价转换为Plain架构
极市平台
0+阅读 · 2021年11月6日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
15+阅读 · 2020年2月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
CVPR2022 | Sparse Transformer刷新点云目标检测的SOTA
专知会员服务
24+阅读 · 2022年3月9日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年10月9日
相关资讯
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
神操作!RM让ResNet等价转换为Plain架构
极市平台
0+阅读 · 2021年11月6日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
15+阅读 · 2020年2月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
10+阅读 · 2018年2月17日
微信扫码咨询专知VIP会员