For autonomous service robots to successfully perform long horizon tasks in the real world, they must act intelligently in partially observable environments. Most Task and Motion Planning approaches assume full observability of their state space, making them ineffective in stochastic and partially observable domains that reflect the uncertainties in the real world. We propose an online planning and execution approach for performing long horizon tasks in partially observable domains. Given the robot's belief and a plan skeleton composed of symbolic actions, our approach grounds each symbolic action by inferring continuous action parameters needed to execute the plan successfully. To achieve this, we formulate the problem of joint inference of action parameters as a Hybrid Constraint Satisfaction Problem (H-CSP) and solve the H-CSP using Belief Propagation. The robot executes the resulting parameterized actions, updates its belief of the world and replans when necessary. Our approach is able to efficiently solve partially observable tasks in a realistic kitchen simulation environment. Our approach outperformed an adaptation of the state-of-the-art method across our experiments.
翻译:自主服务机器人要想在现实世界中成功完成长期任务,就必须在部分可观测环境中明智地采取行动。大多数任务和运动规划方法都承担完全可观测到的状态空间,使其在反映现实世界不确定性的随机和部分可观测领域无效。我们提议了在部分可观测领域执行长期任务的在线规划和执行方法。鉴于机器人的信念和一个由象征性行动组成的计划骨架,我们的方法通过推断成功执行计划所需的连续行动参数,为每一项象征性行动提供了依据。为此,我们将行动参数的联合推断问题作为混合约束性满意度问题(H-CSP),并利用信仰促进解决H-CSP问题。机器人执行由此产生的参数化行动,更新其对世界的信念,并在必要时进行重新规划。我们的方法能够在现实的厨房模拟环境中有效解决部分可观察的任务。我们的方法超越了我们整个实验中最先进的方法的适应性。