Space free-flyers like the Astrobee robots currently operating aboard the International Space Station must operate with inherent system uncertainties. Parametric uncertainties like mass and moment of inertia are especially important to quantify in these safety-critical space systems and can change in scenarios such as on-orbit cargo movement, where unknown grappled payloads significantly change the system dynamics. Cautiously learning these uncertainties en route can potentially avoid time- and fuel-consuming pure system identification maneuvers. Recognizing this, this work proposes RATTLE, an online information-aware motion planning algorithm that explicitly weights parametric model-learning coupled with real-time replanning capability that can take advantage of improved system models. The method consists of a two-tiered (global and local) planner, a low-level model predictive controller, and an online parameter estimator that produces estimates of the robot's inertial properties for more informed control and replanning on-the-fly; all levels of the planning and control feature online update-able models. Simulation results of RATTLE for the Astrobee free-flyer grappling an uncertain payload are presented alongside results of a hardware demonstration showcasing the ability to explicitly encourage model parametric learning while achieving otherwise useful motion.
翻译:目前在国际空间站上运行的Astrobee机器人等空间自由飞行者必须具备内在的系统不确定性。质量和惯性时刻等参数不确定性对于量化这些安全临界空间系统中的量化特别重要,并且可以改变轨道上货物移动等情景,在轨货物移动中,未知的载荷会显著改变系统动态。仔细地了解这些在途中的不确定性可能会避免时间和燃料消耗的纯系统识别操作。认识到这一点,这项工作提议了RATTLE,这是一个在线的有意识的运动规划算法,明确加权参数模型学习以及实时再规划能力,可以利用改进的系统模型。这种方法包括一个两级(全球和当地)规划器、一个低级别模型预测控制器和一个在线参数估计器,用于估算机器人惯性特性,以便更知情地控制和重新规划飞行;所有层次的规划和控制特征是在线更新模型。在使用硬件演示模型的同时,还模拟了Astrobie自由飞行者接近不确定的有效有效载荷的模拟结果。