Let $G$ be a finite, simple, and undirected graph of order $n$ and average degree $d$. Up to terms of smaller order, we characterize the minimal intervals $I$ containing $d$ that are guaranteed to contain some vertex degree. In particular, for $d_+\in \left(\sqrt{dn},n-1\right]$, we show the existence of a vertex in $G$ of degree between $d_+-\left(\frac{(d_+-d)n}{n-d_++\sqrt{d_+^2-dn}}\right)$ and $d_+$.
翻译:让$G$变成一个有限、简单和无方向的顺序图 $n 美元和平均水平 $。 在较小的顺序中,我们用最小间隔来描述含有美元,保证含有某种顶点度的美元。 特别是对于$d ⁇ in left (\ sqrt{dn},n-1\right) 美元,我们用美元表示在 $d\\\\\ left (d ⁇ -d) n\\\ d ⁇ n- d ⁇ sqrt{d\\\\\\\\\dn\\right) 美元和 $d ⁇ 美元之间存在一个水平为$G$的顶点 。