Clustering large amount of data is becoming increasingly important in the current times. Due to the large sizes of data, clustering algorithm often take too much time. Sampling this data before clustering is commonly used to reduce this time. In this work, we propose a probabilistic sampling technique called cube sampling along with K-Prototype clustering. Cube sampling is used because of its accurate sample selection. K-Prototype is most frequently used clustering algorithm when the data is numerical as well as categorical (very common in today's time). The novelty of this work is in obtaining the crucial inclusion probabilities for cube sampling using Principal Component Analysis (PCA). Experiments on multiple datasets from the UCI repository demonstrate that cube sampled K-Prototype algorithm gives the best clustering accuracy among similarly sampled other popular clustering algorithms (K-Means, Hierarchical Clustering (HC), Spectral Clustering (SC)). When compared with unsampled K-Prototype, K-Means, HC and SC, it still has the best accuracy with the added advantage of reduced computational complexity (due to reduced data size).
翻译:目前,大量数据正在变得越来越重要。 由于数据规模庞大, 集群算法往往花费太多时间。 在群集之前对这些数据进行抽样, 通常会用来缩短这一时间。 在这项工作中, 我们提出一种概率抽样技术, 叫做立方体取样, 与 K- Prototype 群集一起进行。 使用立方体取样, 是因为选择了精确的样本。 K- Prototype 是当数据是数字和绝对数据时最经常使用的群集算法( 在当今时代非常常见 ) 。 这项工作的新颖之处在于利用主元件分析( PCA) 获得立方体取样的关键概率。 从 UCI 仓库对多个数据集进行的实验表明, 立方抽样的K- Prototypeat 算法在类似抽样的其他流行群集算法( K- Means, 高射层群集(HC) ) 中, 最精确的组合算法( ) 。 与未标的 K- Prototype、 K- Means、 HC 和 SC SC 相比, 它仍然最准确, 与计算复杂性减少的优点相同。 (由于数据大小)。