Hybrid localization in GNSS-challenged environments using measured ranges and angles is becoming increasingly popular, in particular with the advent of multimodal communication systems. Here, we address the hybrid network localization problem using ranges and bearings to jointly determine the positions of a number of agents through a single maximum-likelihood (ML) optimization problem that seamlessly fuses all the available pairwise range and angle measurements. We propose a tight convex surrogate to the ML estimator, we examine practical measures for the accuracy of the relaxation, and we comprehensively characterize its behavior in simulation. We found that our relaxation outperforms a state of the art SDP relaxation by one order of magnitude in terms of localization error, and is amenable to much more lightweight solution algorithms.


翻译:使用测量的射程和角度在受全球导航卫星系统挑战的环境中使用测量的射程和角度的混合定位越来越受欢迎,特别是随着多式通信系统的出现。在这里,我们利用射程和轴承来解决混合网络本地化问题,以便通过一个单一的最大相似度优化问题共同确定若干物剂的位置,这种优化问题无缝地将所有现有的双向射程和角度测量结合在一起。我们向测距仪提议一个紧凑的锥形代谢,我们研究放松准确性的实际措施,并在模拟中全面描述其行为特征。我们发现,我们的放松在定位错误方面比艺术SDP的放松程度高一等级,并且容易使用更轻得多的解算法。

0
下载
关闭预览

相关内容

【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
87+阅读 · 2021年11月26日
专知会员服务
50+阅读 · 2021年8月8日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
已删除
将门创投
12+阅读 · 2019年7月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
VIP会员
相关资讯
已删除
将门创投
12+阅读 · 2019年7月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Top
微信扫码咨询专知VIP会员