Machine learning models have achieved great success in supervised learning tasks for end-to-end training, which requires a large amount of labeled data that is not always feasible. Recently, many practitioners have shifted to self-supervised learning methods that utilize cheap unlabeled data to learn a general feature extractor via pre-training, which can be further applied to personalized downstream tasks by simply training an additional linear layer with limited labeled data. However, such a process may also raise concerns regarding data poisoning attacks. For instance, indiscriminate data poisoning attacks, which aim to decrease model utility by injecting a small number of poisoned data into the training set, pose a security risk to machine learning models, but have only been studied for end-to-end supervised learning. In this paper, we extend the exploration of the threat of indiscriminate attacks on downstream tasks that apply pre-trained feature extractors. Specifically, we propose two types of attacks: (1) the input space attacks, where we modify existing attacks to directly craft poisoned data in the input space. However, due to the difficulty of optimization under constraints, we further propose (2) the feature targeted attacks, where we mitigate the challenge with three stages, firstly acquiring target parameters for the linear head; secondly finding poisoned features by treating the learned feature representations as a dataset; and thirdly inverting the poisoned features back to the input space. Our experiments examine such attacks in popular downstream tasks of fine-tuning on the same dataset and transfer learning that considers domain adaptation. Empirical results reveal that transfer learning is more vulnerable to our attacks. Additionally, input space attacks are a strong threat if no countermeasures are posed, but are otherwise weaker than feature targeted attacks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
28+阅读 · 2021年10月1日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员