Current methods for image-to-image translation produce compelling results, however, the applied transformation is difficult to control, since existing mechanisms are often limited and non-intuitive. We propose ParGAN, a generalization of the cycle-consistent GAN framework to learn image transformations with simple and intuitive controls. The proposed generator takes as input both an image and a parametrization of the transformation. We train this network to preserve the content of the input image while ensuring that the result is consistent with the given parametrization. Our approach does not require paired data and can learn transformations across several tasks and datasets. We show how, with disjoint image domains with no annotated parametrization, our framework can create smooth interpolations as well as learn multiple transformations simultaneously.
翻译:目前图像到图像翻译的方法产生了令人信服的结果,但是,应用的转换很难控制,因为现有的机制往往有限,而且非直观。我们建议使用ParGAN,即循环一致的GAN框架的概括化,用简单和直观的控件学习图像转换。提议的生成器将图像和转换的平衡化作为输入输入。我们培训这个网络以保存输入图像的内容,同时确保输入图像与给定的平衡化相一致。我们的方法不需要对齐数据,可以学习不同任务和数据集的转换。我们展示了在没有附加注释的图像化不连接的情况下,我们的框架如何创造平稳的互换以及同时学习多重转换。