Temporal closeness is a generalization of the classical closeness centrality measure for analyzing evolving networks. The temporal closeness of a vertex $v$ is defined as the sum of the reciprocals of the temporal distances to the other vertices. Ranking all vertices of a network according to the temporal closeness is computationally expensive as it leads to a single-source-all-destination (SSAD) temporal distance query starting from each vertex of the graph. To reduce the running time of temporal closeness computations, we introduce an index to speed up SSAD temporal distance queries called Substream index. We show that deciding if a Substream index of a given size exists is NP-complete and provide an efficient greedy approximation. Moreover, we improve the running time of the approximation using min-hashing and parallelization. Our evaluation with real-world temporal networks shows a running time improvement of up to one order of magnitude compared to the state-of-the-art temporal closeness ranking algorithms.


翻译:时间接近度是分析不断演变的网络的经典近距离中心度的概括性分析。 顶点美元的时间接近度被定义为时间距离与其他顶点之间的对等性之和。 根据时间接近度排列网络的所有顶点在计算上是昂贵的,因为它导致从图的每个顶点开始的单一源- 全部目的地( SSAD) 时间距离查询。 为了减少时间接近度计算运行时间的运行时间, 我们引入了一种指数, 以加快 SSAD 时间距离查询, 称为子流指数 。 我们显示, 确定是否存在一个特定大小的子流指数是 NP 完成的, 并提供一个高效的贪婪近距离。 此外, 我们用微缩和平行来改进近似时间的运行时间。 我们用真实世界的时间网络进行的评估显示, 与最先进的时间接近率排序算法相比, 时间在不断改善到一个数量级。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
27+阅读 · 2020年6月19日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员