This work concerns developing communication- and computation-efficient methods for large-scale multiple testing over networks, which is of interest to many practical applications. We take an asymptotic approach and propose two methods, proportion-matching and greedy aggregation, tailored to distributed settings. The proportion-matching method achieves the global BH performance yet only requires a one-shot communication of the (estimated) proportion of true null hypotheses as well as the number of p-values at each node. By focusing on the asymptotic optimal power, we go beyond the BH procedure by providing an explicit characterization of the asymptotic optimal solution. This leads to the greedy aggregation method that effectively approximate the optimal rejection regions at each node, while computation-efficiency comes from the greedy-type approach naturally. Extensive numerical results over a variety of challenging settings are provided to support our theoretical findings.
翻译:这项工作涉及为网络上的大规模多重测试开发通信和计算效率高的方法,许多实际应用都对此感兴趣。我们采取零时方法,并提出了两种方法,即比例匹配和贪婪汇总,这些方法适合分布的设置。比例匹配方法达到了全球波黑的性能,但只需要对真实无损假设的(估计)比例以及每个节点的p价值数量进行一次性的(估计)通信和计算效率方法。我们通过侧重于零时最佳能力,通过提供对零时最佳解决办法的明确定性,超越了波黑程序。这导致出现贪婪汇总方法,有效地接近每个节点的最佳拒绝区域,而计算效率自然来自贪婪类型方法。提供了各种挑战性环境的广泛数字结果,以支持我们的理论结论。