Modeling real-world distributions can often be challenging due to sample data that are subjected to perturbations, e.g., instrumentation errors, or added random noise. Since flow models are typically nonlinear algorithms, they amplify these initial errors, leading to poor generalizations. This paper proposes a framework to construct Normalizing Flows (NF), which demonstrates higher robustness against such initial errors. To this end, we utilize Bernstein-type polynomials inspired by the optimal stability of the Bernstein basis. Further, compared to the existing NF frameworks, our method provides compelling advantages like theoretical upper bounds for the approximation error, higher interpretability, suitability for compactly supported densities, and the ability to employ higher degree polynomials without training instability. We conduct a thorough theoretical analysis and empirically demonstrate the efficacy of the proposed technique using experiments on both real-world and synthetic datasets.


翻译:模拟真实世界分布往往会由于受扰动影响的抽样数据(例如仪器错误)或增加随机噪音而具有挑战性。由于流动模型通常是非线性算法,它们会扩大这些初始错误,导致一般化不力。本文件提出了一个构建正常流动的框架,显示对此类初始错误的稳健性。为此,我们利用伯恩斯坦型的优化稳定性所启发的伯恩斯坦型多数值模型。此外,与现有的NF框架相比,我们的方法提供了令人信服的优势,例如近似错误的理论上限、更高的解释性、对紧凑支持的密度的适宜性,以及使用更高程度的多数值而无训练不稳定性的能力。我们进行透彻的理论分析和实验,并用经验来证明在现实世界和合成数据集上进行实验所拟议的技术的功效。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月1日
Arxiv
0+阅读 · 2021年7月30日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
6+阅读 · 2017年12月7日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员